http://en.wikipedia.org/wiki/Topological_sorting
In computer science, a topological sort (sometimes abbreviated topsort or toposort) or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time.
Examples
The canonical application of topological sorting (topological order) is in scheduling a sequence of jobs or tasks based on their dependencies; topological sorting algorithms were first studied in the early 1960s in the context of the PERT technique for scheduling in project management (Jarnagin 1960). The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started (for example, when washing clothes, the washing machine must finish before we put the clothes to dry). Then, a topological sort gives an order in which to perform the jobs.
In computer science, applications of this type arise in instruction scheduling, ordering of formula cell evaluation when recomputing formula values in spreadsheets, logic synthesis, determining the order of compilation tasks to perform in makefiles, data serialization, and resolving symbol dependencies in linkers.

The graph shown to the left has many valid topological sorts, including:
 7, 5, 3, 11, 8, 2, 9, 10 (visual lefttoright, toptobottom)
 3, 5, 7, 8, 11, 2, 9, 10 (smallestnumbered available vertex first)
 3, 7, 8, 5, 11, 10, 2, 9
 5, 7, 3, 8, 11, 10, 9, 2 (fewest edges first)
 7, 5, 11, 3, 10, 8, 9, 2 (largestnumbered available vertex first)
 7, 5, 11, 2, 3, 8, 9, 10

Algorithms
The usual algorithms for topological sorting have running time linear in the number of nodes plus the number of edges ().
One of these algorithms, first described by Kahn (1962), works by choosing vertices in the same order as the eventual topological sort. First, find a list of “start nodes” which have no incoming edges and insert them into a set S; at least one such node must exist in an acyclic graph. Then:
L ← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is nonempty do
remove a node n from S
insert n into L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S
if graph has edges then
return error (graph has at least one cycle)
else
return L (a topologically sorted order)
If the graph is a DAG, a solution will be contained in the list L (the solution is not necessarily unique). Otherwise, the graph must have at least one cycle and therefore a topological sorting is impossible.
Note that, reflecting the nonuniqueness of the resulting sort, the structure S can be simply a set or a queue or a stack. Depending on the order that nodes n are removed from set S, a different solution is created. A variation of Kahn’s algorithm that breaks ties lexicographically forms a key component of the Coffman–Graham algorithm for parallel scheduling and layered graph drawing.
An alternative algorithm for topological sorting is based on depthfirst search. For this algorithm, edges point in the opposite direction as the previous algorithm (and the opposite direction to that shown in the diagram in the Examples section above). There is an edge from x to y if job x depends on job y (in other words, if job y must be completed before job x can be started). The algorithm loops through each node of the graph, in an arbitrary order, initiating a depthfirst search that terminates when it hits any node that has already been visited since the beginning of the topological sort:
L ← Empty list that will contain the sorted nodes
while there are unmarked nodes do
select an unmarked node n
visit(n)
function visit(node n)
if n has a temporary mark then stop (not a DAG)
if n is not marked (i.e. has not been visited yet) then
mark n temporarily
for each node m with an edge from n to m do
visit(m)
mark n permanently
add n to head of L
Note that each node n gets added to the output list L only after considering all other nodes on which n depends (all descendant nodes of n in the graph). Specifically, when the algorithm adds node n, we are guaranteed that all nodes on which n depends are already in the output list L: they were added to L either by the preceding recursive call to visit(), or by an earlier call to visit(). Since each edge and node is visited once, the algorithm runs in linear time. This depthfirstsearchbased algorithm is the one described by Cormen et al. (2001); it seems to have been first described in print by Tarjan (1976).